


ON THE COMPUTATIONAL SOLUTION OF 
DYNAMIC-PROGRAMMING PROCESSES-I 

ON A TACTICAL AIR-WARPARE MODEL OP MENGEL 

By 
Richard Bellman 
Stuart Dreyfus 

i 
P-1072 

Revised 

May 23, 1957 

Appfovad fbr OTS Mena 

NÄRD copy 

DDC 

OOCIRA   B 

mm 
1700   MAIN   IT     •   SANTA   MONICA  •  CAU»OINIA 



P-1072 
Revised 

-11- 

SUMMARY 

This  Is  the first of a series of papers devoted to the 

computational solution of dynamic programming processes.    In 

It we use the functional-equation approach to treat a tactical 

air-warfare model that A.  Mengel previously has  considered by 

means of classical varlatlonal  techniques. 
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ON THE COMPUTATIONAL SOLUTION OP 
DYNAWIC-PROORAMMING  PPOCESSES-I 

ON A TACTICAL AIR-WARFARE MODEL OF MENQEL 

1. INTRODUCTION 

This Is the flret of a eerles of papers devoted to the 

computational solution of dynamic—programming processes. 

Although the papers are linked together by a common method 

each of the diverse problems we shall treat possesses particu- 

lar features of interest and difficulty that make a detailed 

exposition of the coding worthwhile. 

It Is planned eventually to present all the papers of the 

series In the form of a book. 

We would like to express our appreciation to E. W. Paxeon 

for a number of helpful commentF and suggestions which we have 

Incorporated in the paper. 

2. ATTRITION PROCESSES 

The study of attrition processes arl-'ing from military 

campaigns leads to a class of /ariatlonal problems that are 

particularly well suited to dynamic programming. 

Consider the following model.  Let the state of Blue's 

forces at time t be specified by the vector x, with components 

x,,x2,...,x , and the state of Red's forces be specified by y, 

with components y^»yp*•••»Vw«  At each stage of the process, 

which may be discrete or continuous—and this has less to do 

with reality than with the type of computing machine which Is 

available, a digital computer or an analog computer—each side 

allocates a certain portion of the forces to combat, obtaining 
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In this way a certain payoff and suffering, In return, a certain 

attrition.  Let z be the allocation vector of Blue and w the 

allocation vector of Red. The natural conetralnte are, in vector 

form, 

(i) 

that is, 

O^z^x,   O^w^y; 

(2) 0 ^ zi ^ x^ 1, c,...,n. 

0 ^ wj l yj»   J - 1,2,...,N. 

The eingle-etage payoff le determined as some function 

(5)     R(x,y,z,w) 

(in practice, usually the most difficult function to decide upon) 

and we assume that we know the attrition due to combat, so that 

(M — - P(x,y,zrw), x(0) - Q, 
dt 1 

$1 
dt 

0(x,y,z,w), y(0) - q2 

where q, and q2 are the initial forces. 

The mathematical problem 1B then that cf determining 

(5) min  max  /0P(x,y,z,w)dt, 
w    z   o 

where T is the duration of the process, subject to the constraints 

(2) and the relations CO. 

Alternatively, we may wish to determine 

(6) max 
z 

m in / F(x,y ,z,w)dt. 
w 
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Slnce, In general, the deterrlnatlon of mln max or max mln 

le a formidable problem, particularly If mln max 4 ">&*: mln, we 

shall reduce the magnitude of the problem by fixing Red'c strategy, 

say w - w*, and proceeding to determine 

T 
(7) max y* R(x,y,z,w)dt, 

z  o 

subject to 

(8) (a) 0 ^ 2 ^ x, 

(b) ^L - F(x,y,z,w). x(0) - q,, 
dt i 

^ - G{x,y,ztw),   y(0) - qp. 
dt 

Problems of this type are difficult, uelng conventional 

methods, because of the presence of the conetralnte, and the 

analytic structure of the functlonc P, G and R. 

3-  MKNOEL'S MODEL 

Let us now consider the attrition process that ha? been 

discussed by Arnold Mengel, usln^ classical varlatlonal tech- 

niques [5] . 

Considering only air forcee consisting of one type of plane, 

for the purpose of an exploratory model, we have the equations^ ' 

-bp8py/x 
(1)      x - G1(x,yl8p) - r^pX-xtl-e       ), 

-b.s.x/y 
y - G2(x,y,81) - r2-a1y-y(l-e       ), 

(l)     r^r,-, are  replacemert  rates  of  new aircraft.     The  terns 
apX,   8,y 'represent  Oferatlonal   (non—comtat)  attrition  rates. 
Tre   term *2^,'rti   ^8  ^ed'e  counter air effort  over   (t,t«-dt),   with 
"kill  potential     b.Spy.     The cr.ance  any  one of  the x  aircraft   Is 
killed  by one  of   tne   s^y  attacks   Is   bo-     The  average  numLer   of 
attacks  per Blue  aircraft   Is  n  ■  s,.y/^.     Hence tne  probablllt;,  of 
survival   Is   (i-b   )   n  5r exp(   Ln).   ^ 
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for fixed B2, with the payoff function^

1' 

(2)      JCS^ - J*   [(l-81)x^(l-e2)yjdt. 

Here 

(3) x(t) ■ the number of Blue aircraft at time t, 

y(t) ■ the number of Red Aircraft at time t. 

The allocation varlablei' are 

m 8,(t) - fraction of Blue sorties on counter-air strikes, 

e(:)(t) » fraction of Red sorties on counter—air strikes. 

As mentioned above, we shall fix *A\),   In this case by 

assuming various constant levels, 8p, and then maximizing Jls,) 

over all s^U) satisfying 0 < 8,(0 ^ 1. 

4.  DYNAMIC-PROQFAMMINO APPROACH—I 

Setting 

(1) max J(s1) - f(q1,q?,T) 

we obtain, as In [l], the nonlinear partial differential equation 

(2) ^ - max 

with 

(3)      fCq^Qp.S) = 0. 

This equation may be solved numerically using approximating 

difference equations In the usual fashion.  In practice, we en- 

(l)  This measures the total excess of Blue's combat 
capability over Red's iurlng the campaign on missions other 
than counter-air. 
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countered a great deal of difficulty with this method due to 

Instability arising from transition curves.  Consequently, we 

went over to the method we shall present In the next section. 

This method has applications tc the numerical Integration of other 

types of partial differential equations, a matter which we have 

discussed elsewhere. 

5-  DYNAMIC-PROGRAMMING APPROACH—II 

Let us consider the following discrete process.  Divide the 

interval [o,T] into N equal parts of leng-h A, 

i      T r~ 

0    A    2A kh NA - T 

Let us assume that decisions may be made only at times 

kA,  k - 0,1,2, ... ,N—1.  As far as actual procep;. e are concerned, 

this may be a more realistic assumption than that of a continuous 

process. 

In place of the equations (b) of Section 2, we have the 

difference equations, or recurrence relations, 

W xk+i - xk + Gi(VVe?'k)) A'    xo - v 
yk,-l - yk *  MVV8!^)) A'       ^o " ^2' 

where 

(2)      xk - x(kA), yk  - y(kA), 

elk - ei(kA)- 

The sequence  fBi^} Is ^0  be  chosen to maxi-nlze 



(3) 
N-l  r 

subject to the restriction 0 ^_»iv 1 !■ 

Let 

W 

with 

(5) 

max J(B1) - fN(q1,q2) 

fl^ql,q2^ " ^l " (1~a2k^q2 
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The basic recurrence relation used to compute the sequence 

(6) fN(qi'q2) - ^^ [^-"i^i - (i~82)q2 

^ fN-l^ql * öi^i'^2,ti2^'   q2 ■*" Q2^ql'q2,8l^^J 

for N •» 1,2, . . . . 

6.  TIME-DEPENDENT PROCESSES 

Let us consider a process of the same general type in which 

the attrition and payoff functions depend upon time. Thus 

(1)      — - G1(xlyl82,t)l  x(0) - q^ 
d t 

~ - Op(x,y,s1,t),  y(0) - q2, 
dt 

and we wish to choose s, so as to maximize 

(?) J(81) - t/p(x,yfs1,t)dt. 

In this case, we keep the terminal point T fixed and describe 

the state of the process by means of the resources and the starting 
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polnt. 

The discrete maximization problem Is then:  Maximize 

N 
O) J^) - ^  P(xk,yk.slk,k) , 

subject to the constraints 

(4) Vl - Xk + 0l(Xk'ylc'E2k'k^  ^R " ^1' 

yk+l - ^k 
+ G2(Xk'yk'Slk'k^  yR ' ^2- 

Setting 

(5) max JR^) - ^(^i»^)' 

we obtain the recurrence relations 

(6) f^q^Qp) - max  I Plq, .q^, s, ,R) 
0<8l^lL 

■»■fR^1(q1+G1(q1.q2.s2»R).q2-»-o2(q1,q2,s1.R)) i 

for R - 0,1,2,...,N-1, with 

(7) fN^ql'q2^ " mx       Plq^Sp.s^N). 

7,  DISCUSSION OF COMPUTATIONAL PROCEDURES 

The recursive natun? of the problem makes It particularly 

suited to digital computation.  A fairly sizable problem can be 

solved In ^»00 InetructlonE, leaving the bulk of high—speed 

storage available for tabulation of the functions.  In this 

Initial study the luxury of floating-point arithmetic was 

allowed, due to uncertainty concerning the ranges of the vari- 

ables. Considerable additional time and space could be saved In 

i 

> 
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later studlea by fixed-point programming. 

The program Itself can be divided Into 3 logical oectlone. 

A master routine does the bookkeeping, tallying, and sequencing; 

a subroutine evaluates PCq^Qp'8!^ + ^B^T+OT'QP'*^'?^ for 8lv«n 

^l'^'8!'^' and a tab^e 0'' fR' a »©cond subroutine performs the 

maximization of the above expression over the Interval 0 ^ s, ^ 1 

The flow-chart governing the computation la shown In Figure 

8. 

In more detail, the computatlo- proceeds as follows. Under 

control of the master, the constants Aq,, Aq«, 62, N, and m-t-1 

are Input:  ^q, and Aqp determine the density of the grid over 

which the function fR Is to be evaluated; the parameter s« Is 

Red's constant strategy;  N is the number of stages for which 

the process Is allowed to continue; and m-fl determines the size 

of the grid. Its dimensions being mAq, by mAqp. 

The quantity f,(q,,qp) Is evaluated over the grid as 

P{q1,q2,B1) ♦ f  (q1>01,q2+02) Since the return max 
0^1 J. 

from a zero—stage war is Identically zero, the maximum always 

occurs when s, - 0 so that fjlqiiq^^ 1-8 n,er*ly Qi-(1—82^2' 

This corresponds to the fact that during the last stage of a 

war Blue's alrpower will be directed entirely against Red's 

ground forces. 

The calculation of fN with 
fM ^ now known Is not quite so 

trivia?  However, due to the recurrence relation, this calcula- 

tion actually defines the remainder of the program.  Suppose we 

wish to evaluate  fN (C^.Qp)» where (Q,,^) Is some (1 A q,,JAqp) 
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For a particular B, - S, we evaluate (Q, ■♦• Q^tQ^jQp^p), 

Q2 + G2^1'^2*S1^'  Thl8 determines a point X In the QwQp 

plane.  Now X falls within a rectangle of dimensions Aq, by Aq^, 

where t' , Is known at the four cornere, and fN i**) Is found by 

linear Interpolation. By adding (l-S^Q, - (l-S2)Qp, we determine 

fwCQiiQo) for e, » S,.  We need only to repeat this process 

where s, taket on values between 0 and 1 to determine the maximum. 

Since for the majority of a process s, • 0 or 1, It Is expedient 

first to test for an endpolnt maximum before searching the In- 

terior region.  Since fR for each R, R-1,2,...,N, Is evaluated 

over a grid of (nn-1) points, It Is essential to optimize the 

search process.  Consequently tne technique described In [4j was 

adopted. 

Once the function has been evaluated for a fixed R, R+l 

replaces R—1, the newly calculated table fR replaces fp , in nlgh- 

speed storage, and the calculation of fR . begins. 

Since s,, the Blue strategy which maximizes f, Is generally 

of more Interest than the reeültlng payoff, f, a table of E. 

associated with each fR Is stored and punched out prior to the 

computation of fo.i« 

When R reaches N, a.s^umed length of the conflict, the fol- 

lowing Information has been obtained: 

1)  The return attainable by Blue In an N—stage war, where 

Blue enters the conflict with q, planes, Red with q?.   Red uses 

tne fixed allocation between air and ground support sp, and Blue 

uses an optimal allocation.  This by definition Is f..(q,,q0). 



. 

P-lo72 
Rtvlstd 
5-23-57 

-10- 

2) Blue optimal strategy during the first stage of the 

N-stage war. This 1B the 8, which maximizes fg. 

3) Blue optimal strategy during the first stage of a war 

of duration R, R-1,2,...,N—1, for any Initial forces q, and q«. 

These tables are punched during the stage—by-stage calculation. 

The process determining explicitly an optimal policy Is 

essentially that described above, but In reverse. Knowing R, 

the stage, and (qj,qp), we refer to the table of s^'s to deter- 

mine the strategy associated with (q^i^p^* Employing this strategy 

we find ourselves at the (R+l)8 stage and Blue possesses Qi+O. 

planes against Red's qp^Qp* Furthermore, evaluation of (l-s^Jq, 

2)q2 -♦■ {l-B0)q0  produces the payoff during the (R)  time Interval. 

By referring to the tables of optimal strategies for the (R-fl) 

stage and Initial forces q^+G, and qp+Gp, we determine the optimal 

allocation for the (R+l)8 period. The process Is one of re- 

peatedly determining the Initial strategy In wars of decreasing 

length and decreasing forces.  The sequence defines Blue's 

optimal policy. 

At this time, only the most essential computational varia- 

tions have been Investigated.  For example. It was found that 

due to the near-linear behavior of fR over the range 0 to 10000, 

Aq, - Aq? * 300 gave sufficiently accurate results to Justify 

Its use. This same property led to the choice of linear In- 

terpolation throughout the grid. Two versions of the Plbonacclan 

search method of S. Johnson [4j were considered, one using pre- 

determined points of evaluation, the other calculating the points. 



\ 

Tht latter, of courat,  la nor« general,  but the advantagea 

offered by leas calculation and faater convergence led to the 

choice of the foraer.    Printout of all funotlona and atrategy 

valuea along the grid wao made optional.    Conalderable time «aa 

aaved by auppreaalon of printing when 8,  equaled 0, a frequent 

occurrence during the Initial phaaea of a calculation. 

Ö.    GRAPHS 

Reaulta are ahown on the following pages.  Figure 1 ahowa 

the changing relative ttrengtha of the rival air forcea when Blue 

employa an optimal policy.  Due to Blue'a Initial counter-air 

tactlca, Rcd'a force la reduced during the early atagea, while 

Blue*a force dropa auddenly In the later atagea when counter-ground 

atrategy la uaed. Figure 2  ahowb that Blue*a Initial allocation 

of planea la against the Red air force If the total number of planes 

In each force la fairly even.  If Blue has a marked numerical 

superiority or Inferiority, a counter-ground atrategy ahould be 

employed. Figure 3 depicts Blue'a atrategy where Initial forcea 
■ 

are equal.  The next three grapha show Blue's atrategy aa It changes 

with time for all Initial conditlona. Figure 7 showa the exceaa 

sorties flown by Blue aa a reault of employing an optimal, rather 

than conatant, atrategy. The use of an optimal policy in thla 

particular example ia shown to be equivalent to about 800 planea; 

I.e., with the given parameter values Blue can start with 800 fewer 

planea and atlll fly aa many sortlea aa Red during a 1^-etage 

conflict. 

Throughout theae numerical examples,  we have fixed both sides 

replacement rates, r^ and r^, as 100 planes per stage, noo-eoabat 
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attrltlon rates, a, as .1, and kill probabllltlts, b, as .2. 

Figure 8 shows the flow diagram used for computation. 

This structure of the maxiBlsing strategy is typical of a 

large class of problems. The reason for it lies in the concavity 

of the function appearing in (5*6) as a function of s^. This 

concavity in turn is based upon the linearity of the pay-off 

function, and the concavity of the attrition function. Two 

conclusions can be drawn from this. In the first place, it shows 

that great mathematical simplifications ensue when we introduce 

concave functions, or convex functions if we are minimizing. Thus, 

if we have functions which for one reason or another are not 

concave, it may be well initially to use concave approximations 

to these functions. On the other hand, these results show the 

dangers inherent in mathematical models. In the real world, such 

concentration on counter-air or counter-surface at various phases 

of the campaign is dubious. Catastrophic loss by ground forces 

might occur before the time T of the campaign has elapsed. Such 

effects are not measured by the "uniform" pay-off function J. 

There are, of course, dangers in conclusions based upon this 

one—sided approach in which we fix Red's strategy. Iteration 

procedures may be considered in which we alternately fix one aiders 

policy and then the other's. These must be used with care, since 

we know from much simpler games that unless some feedback fro« 

stage to stage is used, the results will not converge. 

.> •■ 
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